

## **Towards Monte Carlo Physically-Based Sound Synthesis**

**Final Presentation** 

**Team 1** Nguyen Minh Hieu, Siripon Sutthiwanna, Ko Wonhyeok

## **Overview**

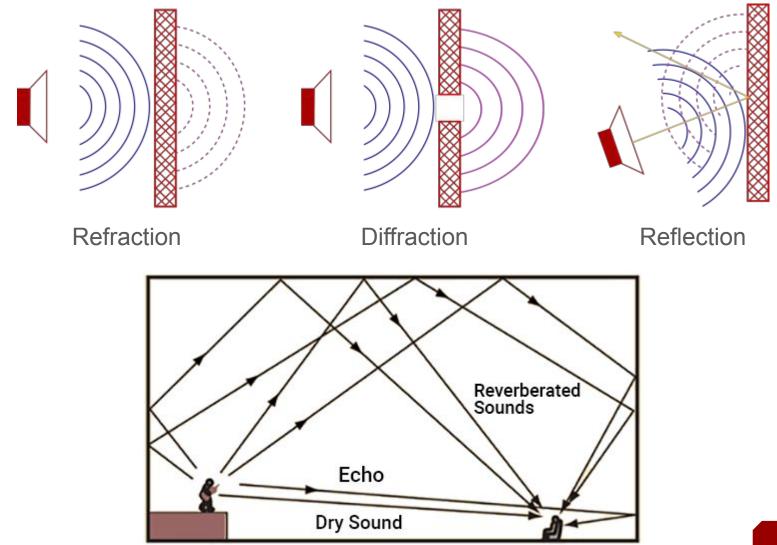
- 1. Motivation
- 2. Method
- 3. Experiment
- 4. Conclusion

## **Motivation**

## **Motivation - Wave Equation is Everywhere**

Wave equation : second-order linear PDE
$$\frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = 0$$
 $\left(\Delta - \frac{1}{c^2} \partial_t^2\right) p(x) = 0$ Seismic  
Wave $(\lambda + 2\mu)\nabla\nabla \cdot u - \mu\nabla \times (\nabla \times u) + \rho\omega^2 u + f = 0$ Image: Comparison of the equation o

## Motivation - Why Physically-based Sound (1)



## Motivation - Why Physically-based Sound (2)



page 6

## Motivation - Why Physically-based Sound (3)



## Method

Linear Elasticity (How object vibrate)

$$\begin{split} \mathbf{M}\ddot{u} + \mathbf{C}\dot{u} + \mathbf{K}u &= \mathbf{F} & \dots (1) \\ \mathbf{K}\mathbf{U} &= \mathbf{\Lambda}\mathbf{M}\mathbf{U}, \text{ where } \mathbf{\Lambda} &= \operatorname{diag}(\omega_i^2) & \dots (2) \\ (1), (2) &\to \ddot{q}_i + (\alpha + \beta\omega_i^2)\dot{q}_i + \omega_i^2q = Q_i(t) \quad \because u = \mathbf{U}q \end{split}$$

Acoustic Wave Equation (How sound propagate)

$$\left(\Delta - \frac{1}{c^2}\partial_t^2\right)p(x) = 0$$

Sound Render (How person hear)

 $|p(\mathbf{x})|q(t)$ 

Linear Elasticity (How object vibrate)

 $\begin{aligned} \mathbf{M}\ddot{u} + \mathbf{C}\dot{u} + \mathbf{K}u &= \mathbf{F} & \dots \\ \mathbf{K}\mathbf{U} &= \mathbf{\Lambda}\mathbf{M}\mathbf{U}, \text{ whe} \mathbf{Volumetric} \mathbf{FEM} & \dots \\ (1), (2) &\rightarrow \ddot{q}_i + (\alpha + \beta\omega_i^2)\dot{q}_i + \omega_i^2 q = Q_i(t) \quad \because u = \mathbf{U}q \end{aligned}$ 

Acoustic Wave Equation (How sound propagate)

$$\Delta - \frac{1}{d\mathbf{BEM}} = 0$$

Sound Render (How person hear)

 $|p(\mathbf{x})|q(t)$ 

Linear Elasticity (How object vibrate)

 $M\ddot{u} + C\dot{u} + Ku = F$   $KU = \Lambda MU, \text{ whe Volumetric} FEM$  $(1), (2) \rightarrow \ddot{q}_i + (\alpha + \beta \omega_i^2)\dot{q}_i + \omega_i^2 q = Q_i(t) \quad \because u = Uq$ 

Acoustic Wave Equation (How sound propagate)

Sound Render (How person hear)

 $|p(\mathbf{x})|q(t)$ 

BFM

vionie Carl

Linear Elasticity (How object vibrate)

 $\mathbf{KU} = \mathbf{\Lambda}\mathbf{KU}, \text{ whe } \mathbf{Volumetrie} \quad \mathbf{FEV}$   $(1), (2) \rightarrow \ddot{q}_i + (\alpha + \beta\omega_i^2)\dot{q}_i + \omega_i^2 q = Q_i(t)$ 

Acoustic Wave Equation (How sound propagate)

Sound Render (How person hear)

 $|p(\mathbf{x})|q(t)$ 

BEM

Monte Carlo

**Acoustic Wave Equation (Time Domain)** 

$$\left(\Delta - \frac{1}{c^2}\partial_t^2\right)u(\mathbf{x}) = 0$$

#### Still **IMPOSSIBLE** to solve with WoS scheme

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + \frac{\omega^2}{c^2}\right)u(\mathbf{x}) = 0$$

# theoretically **POSSIBLE** to solve with WoS scheme. Not sure the implementation

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + k^2\right)u(\mathbf{x}) = 0$$

**Stochastic Representation of Wave Equation** 

$$u(\mathbf{x}) = \mathbb{E}\left[e^{-\frac{1}{2}k^2\tau}f(\mathbf{W}_{\tau})\right]$$

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + k^2\right)u(\mathbf{x}) = 0$$

**Stochastic Representation of Wave Equation** 

$$u(\mathbf{x}) = \mathbb{E} \left[ e^{-\frac{1}{2}k^2\tau} f(\mathbf{W}_{\tau}) \right]$$
  
very HARD to estimate  
termination time  
[Killing WoS, Weighted WoS]

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + k^2\right)u(\mathbf{x}) = 0$$

**Duffin's Correspondence** 

$$U(\mathbf{x}, z) = \cosh(kz)u(\mathbf{x})$$

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + k^2\right)u(\mathbf{x}) = 0$$

**Duffin's Correspondence** 

$$U(\mathbf{x}, z) = \cosh(kz)u(\mathbf{x})$$

Wave Equation after Duffin's Transform

$$\Delta U(\mathbf{u},z)=0$$

**Acoustic Wave Equation (Frequency Domain)** 

$$\left(\Delta + k^2\right)u(\mathbf{x}) = 0$$

**Duffin's Correspondence** 

Wave

$$U(\mathbf{x}, z) = \cosh(kz)u(\mathbf{x})$$
  
Equation after Duffin's Transform  
$$\Delta U(\mathbf{u}, z) = 0$$

## **Solving Acoustic Wave - Neumann BC**

**Acoustic Wave Equation with Neumann BC** 

$$(\Delta + k^2)u(\mathbf{x}) = 0, x \in \Omega$$
  
 $\partial_{\mathbf{n}}u(\mathbf{x}) = f(\mathbf{x}), x \in \partial\Omega$ 

**Duffin's Correspondence with Neumann BC** 

$$\Delta U(\bar{\mathbf{x}}) = 0, \bar{x} = (\mathbf{x}, z) \in \Omega \times \mathbb{R}$$
  
$$\partial_{\mathbf{n}} U(\bar{\mathbf{x}}) = \cosh(kz) f(\mathbf{x}), \bar{x} \in \partial \Omega \times \mathbb{R}$$

## **Solving Acoustic Wave - Neumann BC**

**Acoustic Wave Equation with Neumann BC** 

$$(\Delta + k^2)u(\mathbf{x}) = 0, x \in \Omega$$
$$\partial_{\mathbf{n}}u(\mathbf{x}) = f(\mathbf{x}), x \in \partial\Omega$$

**Duffin's Correspondence with Neumann BC** 

$$\Delta U(\bar{\mathbf{x}}) = 0, \bar{x} \in \bar{\Omega}$$
  
$$\partial_{\mathbf{n}} U(\bar{\mathbf{x}}) = \cosh(kz) f(\mathbf{x}), \bar{x} \in \partial \bar{\Omega}$$

## **Solving Acoustic Wave - Overview**

**Duffin Walk-on-Sphere (Dirichlet BC)** 

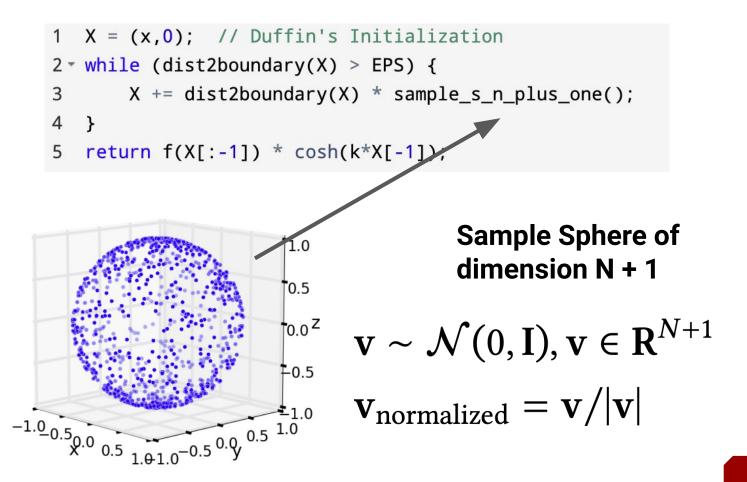
1 X = (x,0); // Duffin's Initialization 2 \* while (dist2boundary(X) > EPS) { 3 X += dist2boundary(X) \* sample\_s\_n\_plus\_one(); 4 } 5 return f(X[:-1]) \* cosh(k\*X[-1]);

#### **General Duffin Walk-on-Sphere Algorithm**

initialize x̄ = (x, 0), x ∈ Ω ⊂ ℝ<sup>N</sup>
solve Laplace equation ΔU(x̄) = 0
get u(x) = U(x̄)

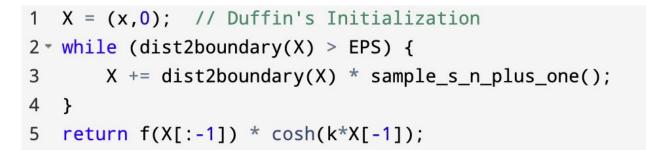
## **Solving Acoustic Wave - Overview**

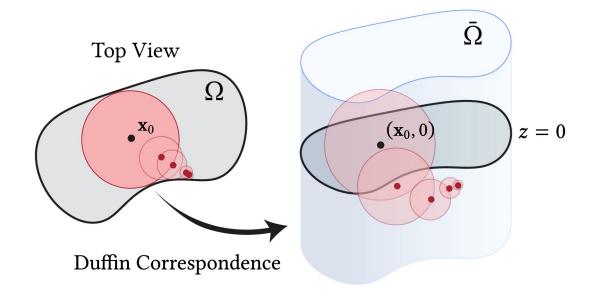
**Duffin Walk-on-Sphere (Dirichlet BC)** 



## **Solving Acoustic Wave - Overview**

**Duffin Walk-on-Sphere (Dirichlet BC)** 





page 24

## **Review - Rigid Body Sound (Modal Sound)**

Linear Elasticity (How object vibrate)

 $\begin{aligned} \mathbf{M}\ddot{u} + \mathbf{C}\dot{u} + \mathbf{K}u &= \mathbf{F} \\ \mathbf{K}\mathbf{U} &= \mathbf{\Lambda}\mathbf{M}\mathbf{U}, \text{ whe } \mathbf{Volumetric} \quad \mathbf{FEM} \\ (1), (2) &\rightarrow \ddot{q}_i + (\alpha + \beta\omega_i^2)\dot{q}_i + \omega_i^2 q = Q_i(t) \quad \because u = \mathbf{U}q \end{aligned}$ 

Acoustic Wave Equation (How sound propagate)

Sound Render (How person hear)

 $|p(\mathbf{x})|q(t)$ 

BEM

Vionie Carl

#### **Elastic Wave Equation (Time Domain)**

$$(\lambda + 2\mu)\nabla\nabla \cdot u(\mathbf{x}, t) - \mu\nabla \times (\nabla \times u(\mathbf{x}, t)) - \rho\partial_t^2 u(\mathbf{x}, t) + f(\mathbf{x}, t) = 0$$

# obviously **IMPOSSIBLE** to solve with WoS scheme

#### **Elastic Wave Equation (Time Domain)**

$$(\lambda + 2\mu)\nabla\nabla \cdot u(\mathbf{x}, t) - \mu\nabla \times (\nabla \times u(\mathbf{x}, t)) - \rho\partial_t^2 u(\mathbf{x}, t) + f(\mathbf{x}, t) = 0$$

# obviously IMPOSSIBLE to solve with WoS scheme

**Elastic Wave Equation (Time Domain)** 

$$(\lambda + 2\mu)\nabla\nabla \cdot u - \mu\nabla \times (\nabla \times u) - \rho\partial_t^2 u + f = 0$$

## obviously **IMPOSSIBLE** to solve with WoS scheme

**Elastic Wave Equation (Frequency Domain)** 

$$(\lambda + 2\mu)\nabla\nabla \cdot u - \mu\nabla \times (\nabla \times u) + \rho\omega^2 u + f = 0$$

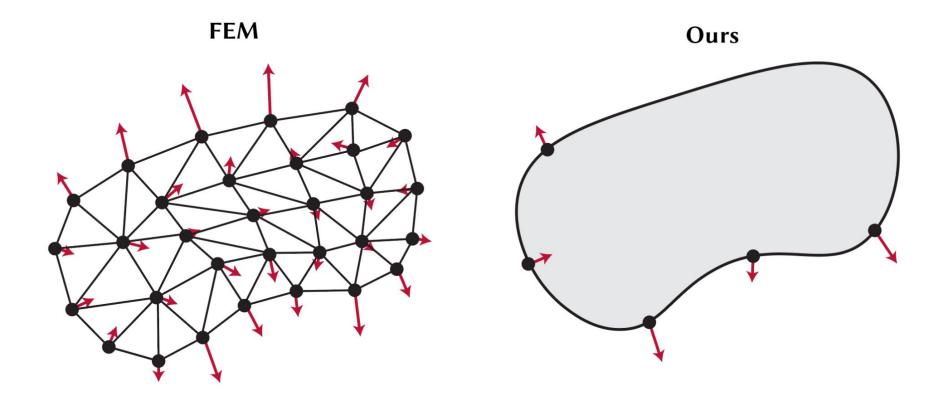


**Elastic Wave Equation (Frequency Domain)** 

$$(\lambda + 2\mu)\nabla\nabla \cdot u - \mu\nabla \times (\nabla \times u) + \rho\omega^2 u + f = 0$$

## Solvable!

#### **Elastic Wave Equation (Frequency Domain)**

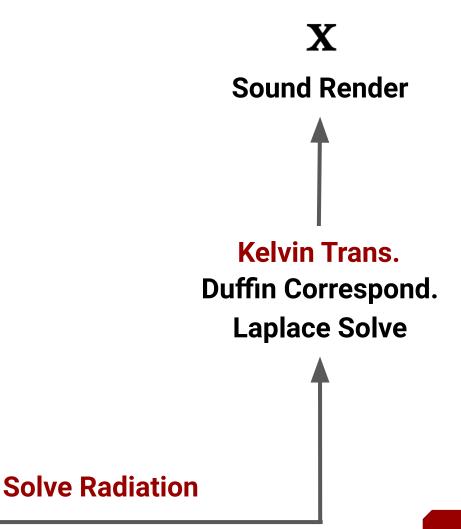


## **Overall Pipeline**

 $\mathbf{f}(x,t) \Omega(x)$ 

Fourier Transform Elastic Solve

**Set Neumann BC** 



## **Kelvin Neumann BC**

With the Neumann boundary condition

$$|\mathbf{y}|^2 \partial_{\mathbf{N}} U(\mathbf{y}) = \omega^2 \rho_{\mathrm{air}} u_n(\phi(\mathbf{y})), \quad \mathbf{y} \in \partial \Omega_{\mathrm{inv}}$$
 (7)

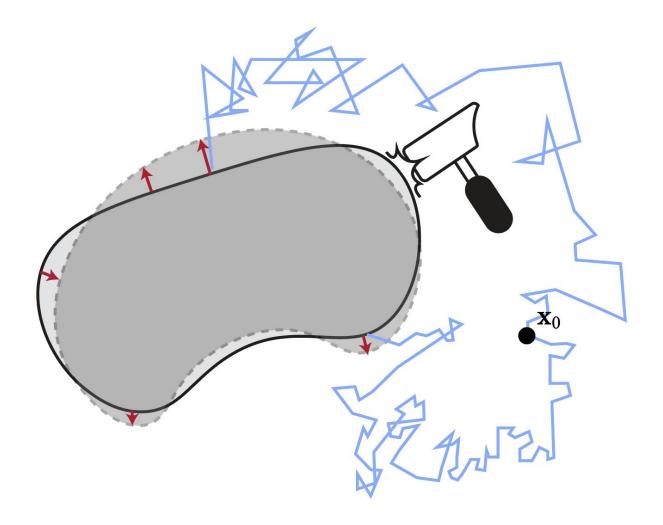
where  $G(\mathbf{y}) = |\mathbf{y}| \exp i \frac{\omega}{|\mathbf{y}|}$ . Solving the original equation is then equivalent to solving for  $V(\mathbf{y})$ :

$$\Delta V(\mathbf{y}) - 2i\omega \frac{\mathbf{y}}{|\mathbf{y}|^3} \cdot \Delta V(\mathbf{y}) = 0, \quad \mathbf{y} \in \Omega_{\text{inv}}$$
(8)

with the Robin boundary condition

$$|\mathbf{y}|^{3} e^{\frac{i\omega}{|\mathbf{y}|}} \partial_{\mathbf{N}} V(\mathbf{y}) + \mathbf{N} \cdot y \left( |\mathbf{y}| - i\omega e^{\frac{i\omega}{|\mathbf{y}|}} \right) V(y) = \omega^{2} \rho_{\mathrm{air}} u_{n}(\phi(\mathbf{y})), \quad (9)$$
$$\mathbf{y} \in \partial \Omega_{\mathrm{inv}}$$

## **Overall Pipeline**



page 34

## **Acceleration Techniques - Recycling Walks**

- Once a frequency is solved, other frequencies can be cheaply evaluated with the cached walks
- Once cached, parallelly solve for all frequencies
- Bidirectional solving of Poisson equations
- Boundary Value Caching

## **Experiment**

## Experiment

#### Wavesolver Dataset [Wang, et al. 2018]

| Scene         | Wang el<br>al. 2018<br>run-time<br>(s) | Ours<br>precompute<br>(s) | Ours<br>run-time<br>(s) | Ours<br>total<br>(s) | Speed-up |
|---------------|----------------------------------------|---------------------------|-------------------------|----------------------|----------|
| Spolling Bowl | 3000                                   | 2.12                      | 0.647                   | 2.77                 | 1083     |
| Wineglass     | 3000                                   | 5.62                      | 6.64                    | 12.26                | 245      |
| LEGO          | 3240                                   | 0.803                     | 1.67                    | 2.47                 | 1312     |

## Conclusion

## Summary

Solving Acoustic wave and Elastic wave equation in frequency domain via Duffin Correspondence. Our contribution includes:

- Deriving Neumann BC for Duffin's Correspondence
- Deriving Kelvin Transformed BC for Helmholtz Equation
- Efficient Implementation of Helmholtz solver on GPU

## **Expected Benefits**

• Fast Wave Solver can use Real-time Physically based sound rendering

- It can use not only sound rendering, but also any situations wave equation used.
  - Seismic wave, schrodinger equation, maxwell equation, ...

## **Future Works**

- Implement Elastic Wave Solver
- Extend beyond rigid bodies (fires, water, etc.)
- Implement More Efficient Sampling (Bidirectional, Adaptive, etc.)



### W.C. Chew: *Elastic Wave Lecture Notes (1991)* R.J. Duffin: *Yukawan potential theory. J. Math. Anal. Appl. 35 (1971), 105–130.*